
DYNAMIC SCHEDULING OF MULTIPLE VIDEO OBJECTS 
FOR MPEG-4 ENCODING WITH USER INTERACTIONS 

Yong Het, Ishfaq Ahmad*, Ming L. Lieu? 
?Department of EEE, *Department of Computer Science, 
The Hong Kong University of Science and Technology, 

Clear Water Bay, Kowloon, Hong Kong 
Email: ?eehey@ee.ust.hk, *iahmad@cs.ust.hk, ?eeliou@ee.ust.hk 

Abstract 

MPEG-4 video consists of various video objects, 
rather than frames, allowing a true interactivity and 
manipulation of separate arbitrary shape object. 
Soware-based encoding of MPEG-4 video objects 
can be carried out by using parallel processing with 
efficient scheduling scheme to speedup the 
computation. In this paper, we propose two dynamic 
scheduling algorithms which have different scheduling 
costs and pegormance levels. The algorithms assign 
the multiple video objects encoding tasks to the cluster 
of workstations with proper load balancing. The 
algorithms allow user on-line interactions and 
pegorm the concurrent encoding on the video objects 
to achieve real-time speed. The experimental results, 
while showing real-time encoding rates, exhibit trade- 
offs between load balancing, overhead scheduling cost 
and global pegormance. 

1 Introduction 
MPEG-4 is a new standard providing the best 

solution for storage, presentation, transmission, and 
management of various types of media objects, both 
natural and synthetic, and is equipped with advanced 
functionalities, such as content-based interactivity, 
high compression, and random access [ 11. 

For most MPEG-4 based multimedia applications, 
an MPEG-4 video encoder should be highly efficient 
and capable of operating multiple video objects in real- 
time. Because software-based approach usually 
employs general-purpose hardware and programming 
primitives which allow the flexibility, portability and 
scalability, it can be run on a vast variety of platforms 
and the performance can be optimized to different 
applications. In addition, software-based approach 
permits the users to configure the special program with 
various downloadable tools and audio-visual objects, 
therefore, software-based approach is a natural and 

viable option for MPEG-4 implementations. 
Furthermore, with the developments of the parallel and 
distributed computing technologies, a higher degree of 
performance at an affordable cost (such as a network 
of workstations or PCs) can be achieved through 
properly scheduling of multiple tasks. 

Because MPEG-4 treats a scene to be coded as 
multiple individual video objects with different spatio- 
temporal characteristic, and each video object could be 
manipulated dynamically by the user interactions 
which result in time varying computational cost, 
implementation of an MPEG-4 encoder using parallel 
processing is a challenging task and cannot be 
accomplished using a straightforward multi-tasking or 
data partitioning strategy. 

Generally, in an MPEG-4 system, with a single 
video encoder server and multiple clients 
configuration, clients may send sporadic requests to 
interact with certain video objects. The request which 
must be handled by the encoder server demands fast 
response time and a certain quality of service. This 
requires the encoder to determine the encoding 
schedule of each video object quickly while ensuring 
necessary synchronizations. The trade-off between the 
overhead time cost, responding time and overall 
encoding performance should be addressed carefully. 

In this paper, we present two dynamic scheduling 
algorithms which have different scheduling costs and 
performance levels. The performance of the encoder 
can be scaled according to the number of workstations 
used and the interactive responding latency is low. 

2 Dynamic Scheduling of Video Objects 

The objective of scheduling in a parallel 
environment is to minimize the overall execution time 
of a concurrent program by properly allocating its 
tasks (in this case, video objects) to the processors [2]. 
Various scheduling algorithms have been reported in 
literature [ 3 ] .  One of the drawbacks of most existing 

0-7803-547 1 -0/99/$10.0001999 IEEE 

IV-3 19 



algorithms is that they assume the knowledge of tasks 
are known before processing and the system state 
remains stable during the entire processing. In an 
MPEG-4 application, the states of video objects may 
change at any time. Moreover, multiple objects 
scheduling problems are known to be NP-hard 
problems, and, therefore, heuristic methods are widely 
used as the feasible solutions. Earliest deadline first 
(EDF) is an optimal and dynamic algorithm which is 
widely employed in the parallel and distributed 
environment computing [4]. The principle of EDF is to 
assign the tasks with earlier deadlines higher priorities. 
We will present two dynamic scheduling algorithms 
based on EDF. 

First, we introduce a low cost approach called 
round robin scheduling (RRS) algorithm which 
schedules the video objects to workstations in a 
sequential EDF order and with a round-robin fashion. 
It adapts to the size variation of the video objects 
which results in a minimum overhead scheduling cost. 
Hence, RRS algorithm is suitable for the applications 
with heavy clientlserver interactions due to its quick 
responding and scheduling time. The second 
algorithm, called GOV (Group of V0Ps)-based 
scheduling (GOVS) algorithm, divides the processors 
into a number of groups such that each group performs 
the encoding on a single video object concurrently 
using an EDF order. In order to deal with video objects 
whose sizes change greatly with varying computation 
power requirements, rescheduling is performed 
periodically on the basis of GOV for adjusting the 
processing configuration and related parameters. With 
enough workstations and low frequent user requests, 
the GOVS algorithm can achieve a higher speedup. 

2.1 The Round Robin Scheduling Algorithm 
The round robin scheduling (RRS) algorithm uses 

the EDF rule by sorting all VOPs in a non-decreasing 
order of their playout deadlines. If two VOPs have the 
same play out deadline, the smallest processing time 
(SPT) is applied, that is, a VOP with a smaller size 
precedes the one with a larger size. A data partitioning 
method [5]  partitions each VOP into a number of 
pieces equal to the number of processors. The RRS 
algorithm allocates the pieces to the processors in a 
round-robin fashion. Whenever a user request is 
received, the scheduler suspends the encoding 
procedure and updates the state of the video objects. 
Then, the processors perform the encoding on the 

video objects according to the new sorting order. 
The RRS algorithm enforces the processors to 

encode each VOP concurrently. By storing all 
reference data in the local memory, each processor is 
able to process the partitioned data locally, and no data 
exchange is required. The scheduling time for sorting 
the VOPs can also be neglected because the 
calculation and comparison of playout deadline is very 
fast. Moreover, such RRS algorithm can adapt to the 
variations of video object size automatically. Since all 
the processors process the same task with different 
partition region concurrently, if the object size 
becomes larger, the partitioned data area will also be 
enlarged, and vice verse. Each processor may spend 
more time on larger VOPs and less time on smaller 
VOPs simultaneously. 

Because the RRS algorithm can respond to the user 
request and perform the rescheduling very quickly, it 
is suitable for the applications supporting interactivity 
from multiple users in real-time. However, since each 
processor has to deal with all the available video 
objects, a data structure should be specified to identify 
the related reference data storage address for each 
video object and local memory should be large enough 
for the storage. In real-time applications, the input data 
rate for each processor is also high. 

2.2 The GOV-based Scheduling Algorithm 

According to the video encoder structure specified 
in MPEG-4, each video object is encoded 
independently. We can divide the processors into a 
number of groups to gain the extra speedup if large 
quantities of processors are available. 

Therefore, we propose a periodical scheduling 
algorithm, called GOV-based scheduling algorithm 
(GOVS), where GOV stands for the Group of VOP 
(Video Object Plane). In order to minimize the inter- 
processor communication cost for collecting the load 
information and exchanging the reference data, the 
scheduling period is based on GOV which is an 
optional syntax level specified by the standard for 
random access and error recovery purpose. The GOV 
length (a collection of VOPs) can be defined by the 
encoder and its header is followed by the I-VOP 
performing Intra-coding which is independent of the 
previous VOPs. Therefore, the change in processor 
assignment by the scheduler due to the user 
interactions will not introduce any additional inter- 
processor communication. 

IV-320 



GOVS algorithm divides the existing processors 
into a number of groups and each group handles single 
video object concurrently. Such allocation is 
performed periodically on the basis of the GOV. 
Within each group, a balanced data partitioning 
method is employed for further encoding speedup. 

The criterion of processor allocation in G0,VS 
algorithm is tied to the shape size, namely, the larger 
object size, the more processors assigned. While this 
may cause load imbalance between the groups since 
the distribution of the processors may not be 
proportional to the size of the video objects due to the 
excessive difference between the object size. One 
feasible solution is to merge the smallest object tasks 
together recursively. 

Such task merging is usually performed whenever 
the number of tasks is greater than the number of 
physical processors by merging a pair of tasks into a 
single co-task [6]. There are various merging 
approaches for different purpose. In our approach, 
such task merging step is to guarantee the load 
balancing among the processors. We define the GOV 
of each video object as a task, and find a pair of tasks 
which have minimum workload among all the clusters; 
then the pair of tasks are merged as one task and such 
operation is recursively executed until the load 
balancing can be met. 

2.3 Experimental Results 

We have implemented the encoder using the above 
proposed scheduling schemes on the test sequences. 
Our software-based encoder uses the MPEG-4 video 
verification model (VM8.0) [7].  We conducted the 
experiments on a cluster of 20 Sparc Ultra 1 
workstations connected by an ATM switch which 
provides fast communication among the workstations. 
Furthermore, we have used various additional 
software optimization, such as fast motion estimation 
algorithm, Visual Instruction Set (VIS) and compiler 
optimization, for performance improvement in the 
encoding speed [8]. 

We designed a test sequence with two foreground 
video objects retrieved from the standard test 
sequences called ‘Akiyo’ and ‘Weather’. Figure 1 
shows the encoding frame rate achieved by the 
encoder using the proposed scheduling algorithms 
with various number of workstations. Generally, the 
performance of GOVS is better than that of RRS due 
to its periodical adjustments. The encoder can achieve 

frame rate higher than the real-time performance (30 
frameshecond) on the QCIF sequence. For the two 
CIF object sequences, a frame rate close to 14 frames/ 
second has been achieved by using 20 workstations. 

0’ ’ ’ I 

(4 

1 2  4 8 12 16 20 
Workstations 

I 
1 2  4 8 12 16 20 

Workstations 

(b) 

Figure 1: Encoding rate of video session with two video 
objects (VOo ‘Weather’ and VO1 ‘Akiyo’). (a) 
QCIF format (b) CIF format 

We also tested the GOVS algorithm on several 
composed sequences. All of the video objects, such as 
‘Akiyo’, ‘Newsl’ and ‘Weather’, as labelled in Figure 
2, are obtained from the MPEG-4 standard test library 
with QCIF format and represent various characteristics 
in terms of spatial detail and movement. 

To evaluate the performance of the scheduling 
algorithm with respect to the user interactions, we 
simulated the user interactions on the sequence and 
varied the request inter-arrival rate. The request inter- 
arrival time represents the average interval between 
two users request. The experiments were performed to 
the sequence ‘Weather + Akiyo’. Figure 3 depicts the 
response and schedule time of proposed algorithms 

IV-32 1 



45r 

I 
8 12 16 20 

Workstations 

Figure 2: Encoder rate of composed sequence in QCIF 
format using GOVS scheduling scheme. 

using 8 workstations. As indicated by these results, the 
RRS algorithm outperforms GOVS in terms of 
responding and scheduling time implying that it is 
more suitable for the environment with high frequent 
cliendserver interactions. Because the GOVS 
algorithm performs the rescheduling periodically, the 
user request has to wait until the encoding of current 
GOV is finished. With more frequent interactions, new 
requests suffer from the queuing delay and the 
response time becomes larger. 

0. I 

0 05 + 

8 1  0 2  0 3  0 4  0 5  06 0 7  
Request inter-arrival time (sec.) 

Figure 3: Response and schedule time with user 
interactions 

3 Conclusions 
In this paper, we present two scheduling schemes 

which assign the video encoding tasks to a cluster of 
workstations with proper load balancing. Each 
algorithm has its own trade-off between performance 
and complexity and therefore is suitable to different 
application environments. With 20 workstations, the 

encoder can achieve a high encoding rate on the 
composed sequences which demonstrate its potential 
to be used in a real-time system. In our future work, we 
will explore MPEG-4 decoders and interactive 
rendering methodology for supporting multimedia 
communication between server and clients of our 
multimedia system. 

4 Acknowledgments 

This work was supported by a grant from the 
Research Grants Council of the Hong Kong Special 
Administrative Region, China and a grant from the 
Hongkong Telecom Institute of Information 
Technology. 

References 

[l]  L. Chiariglione, “MPEG and Multimedia 
Communications,” IEEE Transactions on CSVT, vol. 7, 
no. 1, pp. 5-18, Feb. 1997. 

[2] Y. K. Kwok and I. Ahmad, “Dynamic Critical-Path 
Scheduling: An Effective Technique for Allocating 
Task Graphs to Multiprocessors,” IEEE Trans. on 
Parallel and Distributed Systems, vol. 7, no. 5, pp.506- 
521, May 1996. 

[3] G. C. Buttazzo, Hard Real-Time Computing Systems, 
Kluwer Academic Publishers, 1997 

[4] S. Cheng et al., “Scheduling Algorithms for Hard-Real 
Time Systems - a Brief Survey,” Hard Real-time 
Systems, IEEE Computer Society Press, 1988 

[SI Y. He, I. Ahmad and M. L. Liou, “A Shape-adaptive 
Partitioning Method for MPEG-4 Video Encoding,” 
Proceedings of the 5th International Conference on 
Electronics, Circuits and Systems, pp. 239-242, 1998 

[6] J. C .  Liou and M. A. Palis, “A Comparison of General 
Approaches to Multiprocessor Scheduling,” 
Proceedings of I lth International Parallel Processing 
Symposium, pp. 152-156, 1997 

[7] ISO/IEC, “MPEG-4 Video Verification Model 8.0,” 
JTCl/SC29/WG11 N1796, July 1997 

[8] Y. He, I. Ahmad and M. L. Liou, “A Software-based 
Video Encoder using Parallel Processing,” IEEE Trans. 
on Circuits and Systems for Video Technology, vol. 8, 
no. 7, pp.909-920, November 1998 

IV-322 


